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Abstract: The general position number gp(G) of a connected graph G is the cardinality of a largest set S of
vertices such that no three pairwise distinct vertices from S lie on a commongeodesic. It is proved that gp(G) ≥
ω(GSR), where GSR is the strong resolving graph of G, andω(GSR) is its clique number. That the bound is sharp
is demonstrated with numerous constructions including for instance direct products of complete graphs and
di�erent families of strong products, of generalized lexicographic products, and of rooted product graphs.
For the strong product it is proved that gp(G � H) ≥ gp(G)gp(H), and asked whether the equality holds for
arbitrary connected graphs G and H. It is proved that the answer is in particular positive for strong products
with a complete factor, for strong products of complete bipartite graphs, and for certain strong cylinders.
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1 Introduction
The general position problem was recently and independently introduced in [1, 2]. If G = (V(G), E(G)) is a
graph, then S ⊆ V(G) is a general position set if no triple of vertices from S lie on a common geodesic in G.
The general position problem is to �nd a largest general position set of G, the order of such a set is the general
position number gp(G) of G. A general position set of G of order gp(G) is shortly called gp-set. The general
position problem has been further studied in a sequence of very recent papers [3–7].

A vertex u of a connectedgraphG ismaximally distant fromavertex v if everyw ∈ N(u) satis�es dG(v, w) ≤
dG(u, v), where N(u) is the open neighborhood of u. If u is maximally distant from v, and v is maximally
distant from u, then u and v aremutually maximally distant (MMD for short). The strong resolving graph GSR
ofG hasV(G)as the vertex set, twovertices beingadjacent inGSR if they areMMD inG. Thenotionof the strong
resolving graph was introduced in [8] as a tool to study the strongmetric dimension. There it was proved that
the problem of �nding the strongmetric dimension of a graph G can be transformed to the problem of �nding
the vertex cover number of GSR. Further on, the strong resolving graph itself was remarked as a kind of graph
transformation in [9], and several characterizations and realizations of it were described.

Now, one of the open problems presented in [9] concerns �nding applications for the strong resolving
graph construction, other than that of computing the strong metric dimension of graphs. In this paper we
give a partial answer to this problem by establishing a connection between the general position number of a
graph G and the clique number of the graph GSR. More precisely, in Theorem 3.1 we prove that gp(G) ≥ ω(GSR)
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holds for any connected graph G. Then we demonstrate with di�erent in�nite families of graphs, including
direct products of complete graphs, that the bound is sharp.We also show that for any integers r ≥ t ≥ 2, there
exists a graph G such that gp(G) = r and ω(GSR) = t. In Section 4 we focus on strong products of graphs. We
prove that gp(G � H) ≥ gp(G)gp(H) holds for connected graphs G and H and that the bound is again sharp.
In particular, if gp(G) = ω(GSR), then gp(G � Kn) = n · gp(G) = ω((G � Kn)SR). We close the section with
a question on whether actually the equality gp(G � H) = gp(G)gp(H) holds for arbitrary connected graphs
G and H. In Section 5 we give additional large families of graphs, based on the generalized lexicographic
product, for which the equality in Theorem 3.1 holds. In the �nal section we determine the general position
number for di�erent rooted product graphs and relate the values with the corresponding clique numbers of
strong resolving graphs.

Before giving our results, we list in the next section de�nitions and concepts not yet given, as well as
some results needed later.

2 Preliminaries
For a positive integer k we will use the notation [k] = {1, . . . , k}. If G = (V(G), E(G)) is a graph, then n(G) =
|V(G)| and m(G) = |E(G)|. If X ⊆ V(G), then the subgraph of G induced by X is denoted 〈X〉.

The distance dG(u, v) between vertices u and v of a graph G is the number of edges on a shortest u, v-path.
A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for all u, v ∈ V(H). A set of subgraphs
{H1, . . . , Hk} of a graphG is an isometric cover ofG if eachHi, i ∈ [k], is isometric inG and

⋃k
i=1 V(Hi) = V(G).

With this concept in hand we can recall the following.

Theorem 2.1. [1, Theorem 3.1] If {H1, . . . , Hk} is an isometric cover of G, then

gp(G) ≤
k∑
i=1

gp(Hi) .

If G is a connected graph, S ⊆ V(G), and P = {S1, . . . , Sp} a partition of S, then P is distance-constant (alias
“distance-regular” [10, p. 331]) if for any i, j ∈ [p], i ≠ j, the distance dG(u, v), where u ∈ Si and v ∈ Sj,
is independent of the selection of u and v. This distance is then the distance dG(Si , Sj) between the parts Si
and Sj. A distance-constant partition P is in-transitive if dG(Si , Sk) = ̸ dG(Si , Sj) + dG(Sj , Sk) holds for pairwise
di�erent indices i, j, k ∈ [p]. With these concepts, general position sets can be characterized as follows.

Theorem 2.2. [3, Theorem 3.1] Let G be a connected graph. Then S ⊆ V(G) is a general position set if and only
if the components of 〈S〉 are complete subgraphs, the vertices of which form an in-transitive, distance-constant
partition of S.

Let η(G) denote the maximum order of an induced complete multipartite subgraph of the complement G of a
graph G. Then we have:

Theorem 2.3. [3, Theorem 4.1] If diam(G) = 2, then gp(G) = max{ω(G), η(G)}.

Vertices u and v of a graph G are true twins if N[u] = N[v], where N[u] is the closed neighborhood of u. Note
that only adjacent vertices can be true twins.

Proposition 2.4. If G has no true twins and diam(G) = 2, then gp(G) = ω(GSR) if and only if gp(G) = α(G).

Proof. Since G is true-twin free, GSR is isomorphic to the complement G of G. Hence ω(GSR) = α(G) and thus
the conclusion.

The Petersen graph P is a sporadic example of a graph without true twins and of diameter 2 for which
gp(P) = ̸ ω(PSR). Indeed, gp(P) = 6 and ω(PSR) = α(P) = 4.
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Let G and H be graphs. Among the four standard graph products, we will consider the direct product
G × H, the strong product G � H, and the lexicographic product G[H]. The vertex set of all these products is
V(G)×V(H). Let (g, h), (g′, h′) ∈ V(G)×V(H). In G×H, the vertices (g, h) and (g′, h′) are adjacent if gg′ ∈ E(G)
and hh′ ∈ E(H). In G� H, the vertices (g, h) and (g′, h′) are adjacent if one of the following three conditions
hold: (i) gg′ ∈ E(G) and h = h′, (ii) g = g′ and hh′ ∈ E(H), (iii) gg′ ∈ E(G) and hh′ ∈ E(H). Finally, in G[H]
the vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H). We note that the
lexicographic product is also denoted with G ◦H to emphasize the associativity of the operation, but here we
use G[H] to be consistent with the generalized lexicographic product (to be de�ned later). If G*H is one of the
above products and h ∈ V(H), then the subgraph of G * H induced by {(g, h) : g ∈ V(G)} is called a G-layer.
Analogously H-layers are de�ned. In G ×H, each G-layer is an edgeless graph of order n(G). In all other above
products, each G-layer is isomorphic to G. If X is a set of vertices of G * H, then the projection of X to G is the
set {g ∈ V(G) : (g, h) ∈ X for some h ∈ V(H)}. Analogously the projection of X to H is de�ned. For more
information on the standard graph products see the book [11], here we just recall the following well-known
result (cf. [11, Proposition 5.4]) needed later.

Proposition 2.5. If (g, h) and (g′, h′) are vertices of a strong product G � H, then

dG�H
(
(g, h), (g′, h′)

)
= max{dG(g, g′), dH(h, h′)} .

3 The lower bound and equality cases
In this section we �rst prove the key result that connects the general position problem with the strong
resolving graphs.

Theorem 3.1. If G is a connected graph, then gp(G) ≥ ω(GSR). Moreover, equality holds if and only if G contains
a gp-set that induces a complete subgraph of GSR.

Proof. Let S ⊆ V(GSR) induce a complete subgraph of GSR. This means that any two vertices x, y ∈ S are
MMD in G. We now consider the vertices of S in the graph G. If there are three distinct vertices x, y, z ∈ S
lying on a common geodesic, say y lies in an x, z-geodesic, then neither x, y nor y, z are MMD in G, which is a
contradiction. Thus, any three vertices of S do not lie in a common geodesic of G, and therefore, S is a general
position set in G. Selecting S to be a complete subgraph GSR of order ω(GSR) leads to the desired bound.

Suppose now that gp(G) = ω(GSR). By the above, any complete subgraph of GSR of order ω(GSR) yields
a gp-set. Conversely, let S be a gp-set of G that forms a complete subgraph of GSR. Then, using the already
proven inequality gp(G) ≥ ω(GSR), we have

|S| ≤ ω(GSR) ≤ gp(G) = |S| ,

from which we conclude that ω(GSR) = gp(G).
Onewould immediately think of characterizing the class of graphs achieving the equality in Theorem 3.1.

However, such a characterization seems to be elusive because of the great variety of di�erent structures that
can appear. In the followingwe justify this variety and begin a couple of simple examples that were implicitly
known previously.

– Block graphs, in particular complete graphs and trees.
Indeed, in [1] it was observed that in block graphs the set of simplicial vertices forms a gp-set. Since
simplicial vertices of a graph G also form a set of MMD vertices of a graph (equivalently, they form a
complete subgraph of GSR), Theorem 3.1 implies that gp(G) = ω(GSR) if G is a block graph.

– Complete multipartite graphs.
Let G = Kn1 ,...,nk , where k ≥ 2, n1 ≥ n2 ≥ · · · ≥ nk ≥ 2, and n1 ≥ k. Then it is easy to see that the vertices of
the n1-partite set form a maximum general position set. Moreover, the vertices of this set also form a set
of mutually maximally distant vertices of G. Hence, gp(G) = ω(GSR) by Theorem 3.1.
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Let G and H be graphs where V(G) = {v1, . . . , vn}. The corona G�H of graphs G and H is obtained from
the disjoint union of G and n disjoint copies of H, say H1, . . . , Hn, where for all i ∈ [n], the vertex vi ∈ V(G)
is adjacent to each vertex of Hi. Then we have another equality case:

Proposition 3.2. If H =
⋃
i Kni , ni ≥ 1, then for every graph G, gp(G � H) = ω((G � H)SR).

Proof. From [4, Theorem 4.3], it can be noticed that gp(G � H) = n(G)
∑

i ni, and also that the union of the
sets of vertices of all copies of H in G � H form a gp-set S of G � H. Every two vertices belonging to one copy
of H are MMD, as well as are MMD every two vertices belonging to two di�erent copies of H. Hence S forms a
complete subgraph of (G � H)SR. Thus we deduce the equality by Theorem 3.1.

We note in passing that Proposition 3.2 remains valid in a more general setting when di�erent disjoint
unions of complete graphs are attached to the vertices of G.

In the next resultwe provide a family of direct product graphs forwhich the equality holds in Theorem3.1.
To this end, we locally use the Cartesian product of graphs. As the other standard graph products, the
Cartesian product G�H of graphs G and H has vertex set V(G) × V(H), and two vertices (g, h) and (g′, h′)
are adjacent in G�H if one of the following two conditions hold: (i) gg′ ∈ E(G) and h = h′, (ii) g = g′ and
hh′ ∈ E(H).

Proposition 3.3. If n1 ≥ n2 ≥ 3, then

gp(Kn1 × Kn2 ) = ω((Kn1 × Kn2 )SR) = n1 = α((Kn1 × Kn2 )SR) .

Proof. We �rst note that ω(Kn1 × Kn2 ) = min{n1, n2} = n2. On the other hand, since every two vertices of
Kn1 × Kn2 belonging to two di�erent copies of Kn1 and of Kn2 are adjacent, every maximal induced complete
multipartite subgraph of Kn1 × Kn2 is formed by the set of vertices of one copy of Kn1 or of Kn2 . Thus, η(Kn1 ×
Kn2 ) = max{n1, n2} = n1. Now, since n1 ≥ n2 ≥ 3, it follows that diam(Kn1 × Kn2 ) = 2 and hence Theorem 2.3
yields gp(Kn1 × Kn2 ) = max{η(Kn1 × Kn2 ), ω(Kn1 × Kn2 )} = n1. From [9, 12] it is known that (Kn1 × Kn2 )SR ∼=
Kn1 � Kn2 and since ω(Kn1 � Kn2 ) = max{n1, n2} = n1, the �rst two equalities follows. The last equality then
follows by Proposition 2.4.

Note that if we consider n1 > n2 = 2 in the result above, then Kn1 × K2 is of diameter 3, and its strong
resolving graph is Kn1 � K2. Thus, ω((Kn1 × K2)SR) = 2. Since gp(Kn1 × K2) = n1 > 2, there is no equality as in
the proposition.

Another example of direct products for which the equality in Theorem 3.1 does not hold is Kr,t ×Kn, where
r ≥ t ≥ 2 and n ≥ 3. Since diam(Kr,t ×Kn) = 3, [3, Theorem 5.1] implies that gp(Kr,t ×Kn) = α(Kr,t ×Kn). Since it
is not di�cult to verify that α(Kr,t × Kn) = rn, we get gp(Kr,t × Kn) = rn. On the other hand, from [9, Theorem
35] we know that (Kr,t × Kn)SR ∼=

⋃n
i=1 Kr+t, and so ω((Kr,t × Kn)SR) = r + t. As r ≥ t ≥ 2 and n ≥ 3 we have

rn > r + t.
Based on the above special cases we pose the following question about a possible dichotomy in direct

product.

Problem 3.4. Is it true that gp(G × H) = ω((G × H)SR) can only hold in the case when diam(G × H) = 2?

To conclude the section we give the following realization result which intuitively indicates that one cannot
expect some natural upper bound on gp(G) in terms of ω(GSR).

Proposition 3.5. For any integers r ≥ t ≥ 2, there exists a graph G such that gp(G) = r and ω(GSR) = t.

Proof. Since r ≥ t, there exists a non-negative integer q such that r = t + q. We now consider a graph Gq
de�ned as follows.We begin with q copies of the cycle graph C4 and t−q copies of the graph P2. Thenwe add
an extra vertex z and one edge between z and exactly one vertex of each copy of C4 and of P2. We observe that
the components of the strong resolving graph (Gq)SR are: one complete graph of order t, q complete graphs
K2, and t + 1 isolated vertices. Thus ω((Gq)SR) = t. On the other hand, a set formed by two non-adjacent
vertices of each copy of the cycle C4 (those ones not adjacent to z), and one vertex of each copy of the path
P2, used to construct Gq, is a general position set of Gq, and so, gp(Gq) ≥ 2q + t − q = t + q = r. We can readily
observe that such set is indeed a gp-set of Gq, and therefore gp(G) = r, which completes the proof.
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4 Strong products
If G and H are connected graphs, then each G-layer and each H-layer of G � H is an isometric subgraph of
G � H. Hence Theorem 2.1 gives the following upper bound.

Corollary 4.1. If G and H are connected graphs, then

gp(G � H) ≤ min{n(G)gp(H), n(H)gp(G)} .

Wewill later see that the bound of Corollary 4.1 is tight. On the other handwehave the following lower bound.

Theorem 4.2. If G and H are connected graphs, then gp(G � H) ≥ gp(G)gp(H).

Proof. Let SG and SH be gp-sets of G and H, respectively. We claim that SG × SH is a general position set of
G � H. To prove it, consider arbitrary pairwise di�erent vertices of SG × SH , say (g, h), (g′, h′), (g′′, h′′), and
assume on the contrary that in G�H there exists a shortest (g, h), (g′′, h′′)-path P that passes through (g′, h′).
We now distinguish several cases.

Suppose �rst that g = g′ = g′′. Since (g, h), (g′, h′), (g′′, h′′) are pairwise di�erent vertices of G � H, the
vertices h, h′, h′′ are then pairwise di�erent. But then the projection of P to H is a shortest h, h′′-path that
contains h′, a contradiction. Similarly, if g, g′, g′′ are pairwise di�erent, then the projection of P to G is a
shortest g, g′′-path that contains g′.

Suppose next that g = g′ and g′′ = ̸ g. Then clearly h = ̸ h′. If h′′ is di�erent from both h and
h′, then, as above, consider the projection of P to H to get a contradiction. The other subcase is that
h′′ = h′ (the subcase h′′ = h is treated analogously). Let dG(g, g′′) = k and dH(h, h′′) = `. By Proposi-
tion 2.5, dG�H((g, h), (g′′, h′′)) = max{k, `}. Denoting by P′ the (g, h), (g, h′)-subpath of P and by P′′ the
(g, h′), (g′′, h′′)-subpath of P, we get thatmax{k, `} = |P| = |P′| + |P′′| ≥ ` + k, a contradiction since k ≥ 1 and
` ≥ 1. The case g = g′′, g′ ≠ g, and the case g′ = g′′, g ≠ g′, are treated analogously.

In [6, Theorem 3.3] it was proved that gp(P∞ � P∞) = 4. Since the strong grid Pn � Pm is an isometric
subgraph of P∞ � P∞ for each n,m ≥ 2, it follows that gp(Pn � Pm) ≤ 4. On the other hand, as Pn � Pm
contains K4 we also have gp(Pn � Pm) ≥ 4. We conclude that

gp(Pn � Pm) = 4, n,m ≥ 2 . (1)

This result shows that the bound in Theorem 3.1 is sharp. More sharpness examples are provided with the
next result which also shows the tightness of Corollary 4.1.

Proposition 4.3. If G is a connected graph and n ≥ 1, then gp(G�Kn) = n ·gp(G). Moreover, if gp(G) = ω(GSR),
then gp(G � Kn) = ω((G � Kn)SR).

Proof. The �rst assertion follows by combining Theorem 4.2 with Corollary 4.1.
Suppose now that in addition gp(G) = ω(GSR) holds. In view of Theorem 3.1, there exists a gp-set SG of G

that induces a complete subgraph of GSR. By the proof of Theorem 4.2, SG × V(Kn) is a gp-set of G � Kn. The
components of the subgraph of G� Kn induced by SG × V(Kn) are of the form Q� Kn, where Q is a complete
component induced by SG.

If (g, x) and (g′, x′) belong to di�erent components Q�Kn and Q′�Kn induced by SG ×V(Kn), then with
Proposition 2.5 in mind we have dG�Kn ((g, x), (g

′, x′)) = dG(g, g). Since g and g′ are MMD, this implies that
also (g, x) and (g′, x′) are MMD.

Suppose next that (g, x) and (g′, x′)belong to the same componentQ�Kn. If g = g′, then (g, x) and (g′, x′)
are clearly MMD. Suppose now that g = ̸ g′. Then, since g and g′ are adjacent and MMD in G, the vertices g
and g′ are true twins. But then it follows that (g, x) and (g′, x′) are MMD in G�Kn. The second assertion now
follows from Theorem 2.2.

Since gp(T) = t for every tree T with t leaves, we have gp(T� Pn) ≥ 2t by Theorem 4.2. We next show that
this becomes an equality for an in�nite number of trees. To this end, we say that a tree T belongs to a family
T if there exits a �nite sequence T1, . . . , Tr, r ≥ 1, of trees such that,
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– T1 is a path on at least three vertices;
– T2 is obtained from T1 by adding a path P of order at least 3 and joining by an edge one not leaf vertex of
P with one not leaf vertex of T1;

– for every i ∈ {3, . . . , r}, Ti is obtained from Ti−1 by adding a path P of order at least 3 and joining by an
edge one not leaf vertex of P with one vertex of degree larger than two of Ti−1; and

– T = Tr.

Note that if T ∈ T is obtained by the above construction in r steps, then T has exactly 2r leaves.

Proposition 4.4. If T ∈ T and has 2r leaves, then gp(T � Pn) = 4r = ω((T � Pn)SR).

Proof. From Theorem 4.2 we get gp(T � Pn) ≥ 4r. We next show that this is also the exact value.
Let Pni , i ∈ [r], be thepathused to generate T in the ith stepof the constructionof T. Let Si = V(Pni )×V(Pn),

i ∈ [r]. Then note that S1, . . . , Sr form a partition of V(T � Pn), where each Si induces a graph isomorphic to
the strong grid graph Pni � Pn.

Since {S1, . . . , Sr} form an isometric cover of T � Pn, Theorem 2.1 and (1) imply that

gp(T � Pn) ≤
r∑
i=1

gp(〈Si〉) = 4r ,

hence the �rst equality follows.
From [9, Theorem 40] we know that TSR� (Pn)SR is a subgraph of (T� Pn)SR. Since TSR� (Pn)SR contains

a clique of size 4r, we then also have such a clique in (T � Pn)SR and so ω((T � Pn)SR) ≥ 4r. Theorem 3.1
completes the argument.

Proposition 4.5. If r1 ≥ t1 ≥ 1 and r2 ≥ t2 ≥ 1, then

gp(Kr1 ,t1 � Kr2 ,t2 ) = r1r2 = ω((Kr1 ,t1 � Kr2 ,t2 )SR) = α(Kr1 ,t1 � Kr2 ,t2 ) .

Proof. We �rst observe that diam(Kr1 ,t1 � Kr2 ,t2 ) = 2 and thus Theorem 2.3 applies.
The set obtained from the Cartesian product of the partite sets of cardinality r1 and r2 of Kr1 ,t1 and Kr2 ,t2 ,

respectively, forms a maximal induced complete multipartite subgraph of the complement of Kr1 ,t1 � Kr2 ,t2
of cardinality r1r2. Since ω(Kr1 ,t1 � Kr2 ,t2 ) = 4, we deduce that gp(Kr1 ,t1 � Kr2 ,t2 ) = r1r2.

On the other hand, since Kr1 ,t1 � Kr2 ,t2 has diameter two and has not true twin vertices, the strong
resolving graph (Kr1 ,t1 � Kr2 ,t2 )SR is just the complement of Kr1 ,t1 � Kr2 ,t2 . Thus, we obtain that ω((Kr1 ,t1 �
Kr2 ,t2 )SR) = α(Kr1 ,t1 � Kr2 ,t2 ) = r1r2, hence the last two equalities.

Theorem 4.6. If r ≥ 2and t ≥ 1, then6 ≤ gp(Pr�C2t+1) ≤ 7.Moreover, if t ∈ [2] or r = 2, thengp(Pr�C2t+1) = 6.

Proof. If t = 1, then by Proposition 4.3, gp(Pr � C3) = gp(Pr � K3) = 3gp(Pr) = 6. Hence, from now on we
may assume t ≥ 2.

Let U = {u1, . . . , ur} and V = {v1, . . . , v2t+1} be the vertex sets of Pr and C2t+1, respectively, with natural
adjacencies. From Theorem 4.2, we know that gp(Pr � C2t+1) ≥ 6. A subpath P of C2t+1 which is of length
at most t is an isometric subgraph of C2t+1, hence U × P induces an isometric subgraph of Pr � C2t+1. In
particular this implies that the set {U × {v1, . . . , vt+1}, U × {vt+2, . . . , v2t+1}} forms an isometric cover of
Pr � C2t+1 consisting of two strong grids. Hence, again using Theorem 2.1 together with (1) we infer that
gp(Pr � C2t+1) ≤ 8.

We now suppose that gp(Pr � C2t+1) = 8 and let S be a gp-set of Pr � C2t+1. Let S′ be the projection of S
onto C2t+1 and consider the following situations.

Case 1: |S′| = 8.
This means that for each vi ∈ S′ we have |(U × {vi}) ∩ S| = 1. Without loss of generality we can assume that
v1 ∈ S′. Consider now a partition of V given by the sets V1 = {v1, . . . , vt+1} and V2 = {vt+2, . . . , v2t+1}. As
noted above, U×V1 and U×V2 induce strong grids that are isometric subgraphs of Pr�C2t+1. Thus, by (1) and
since we have assumed gp(Pr�C2t+1) = 8, we deduce |S∩ (U ×V1)| = 4 and |S∩ (U ×V2)| = 4. Analogously, if
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V ′
1 = {v2, . . . , vt+1} and V ′

2 = {vt+2, . . . , v2t+1, v1}, then also U × V ′
1 and U × V ′

2 induce two strong grids that
are isometric subgraphs of Pr � C2t+1. Since |S ∩ (U × V ′

2)| = 5, we get a contradiction.

Case 2: 4 ≤ |S′| ≤ 7.
Thismeans that there exists at least one vertex vi ∈ S′ such that |(U ×{vi})∩S| = 2. Note that for every vi ∈ S′,
it must happen |(U × {vi}) ∩ S| ≤ 2, otherwise we �nd a geodesic containing three vertices of S. Without loss
of generality we can assume that v1 ∈ S′ satis�es that |(U × {v1}) ∩ S| = 2. A similar argument as in Case 1
leads to the partition of V given by V ′

1 and V ′
2 (as in Case 1), and such that U × V ′

1 and U × V ′
2 induce strong

grids that are isometric subgraphs of Pr � C2t+1 for which |S ∩ (U × V ′
2)| = 6, which is again not possible.

Case 3: |S′| ≤ 3.
Since for every vi ∈ S′, itmust happen |(U×{vi})∩S| ≤ 2, we deduce that |S| =

∑
vi∈S′ |(U×{vi})∩S| ≤ 2|S

′| ≤ 6.
This is a �nal contradiction proving that |S| = 8 is not possible.

We have thus proved that gp(Pr � C2t+1) ≤ 7. Let next t = 2. Then we consider again the projection S′

as de�ned above, but in this case we clearly have |S′| ≤ 5. Now, if |S| = 7, then we get a contradiction along
the same lines as above. Hence gp(Pr � C5) = 6. Finally, if r = 2, then the situation in which |S′| = 7 leads to
the existence of seven vertices lying in di�erent layers of the factor graph P2. But then there are three of such
vertices lying on the same geodesic, which is not possible and so gp(P2 � C2t+1) = 6.

Upper bounds on the general position number of the cylinder Pr � C2t and of the torus Cr � Ct, can be
deduced by using similar techniques as in the proof above, except that in the last two cases we split the torus
into two cylinders. On the other hand, lower bounds can be obtained from Theorem 4.2. That is next stated.

Remark 4.7. Let r, t be two integers.

– If r ≥ 2 and t ≥ 3, then 6 ≤ gp(Pr � C2t) ≤ 8.
– If r ≥ 5 and t ≥ 3, then 9 ≤ gp(Cr � C2t) ≤ 16.
– If r ≥ 4 and t ≥ 2, then 9 ≤ gp(Cr � C2t+1) ≤ 14.

Using similar approach as in the proof of Theorem 4.6, the last upper bound 14 from Remark 4.7 can be
lowered to 13.

Since C4 is a complete bipartite graph and satis�es gp(C4) = 2, from Proposition 4.5, we obtain that
gp(C4 � C4) = 4. Note that it also occurs the equality gp(C4 � C4) = 4 = ω((C4 � C4)SR) (for information on
the structure of (C4 � C4)SR see [9]).

Based on the results of this section we pose the following:

Problem 4.8. Is it true that if G and H are arbitrary connected graphs, then

gp(G � H) = gp(G)gp(H) ?

Assuming that the answer to the problem is positive, if gp(G) = ω(GSR) and gp(H) = ω(HSR), then gp(G�H) =
ω((G � H)SR).

5 Generalized lexicographic products
LetG be a graphwithV(G) = {g1, . . . , gn} and letHi, i ∈ [n], be pairwise disjoint graphs. Then the generalized
lexicographic product G[H1, . . . , Hn] has the vertex set⋃

i∈[n]

{(gi , h) : h ∈ V(Hi)} ,

and the edge set

{(gi , h)(gj , h′) : gigj ∈ E(G), h ∈ E(Hi), h′ ∈ E(Hj)} ∪
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⋃
i∈[n]

{(gi , h)(gi , h′) : hh′ ∈ E(Hi)} .

In words, G[H1, . . . , Hn] is obtained from G by replacing each vertex vi ∈ V(G) with the graph Hi, and each
edge gigj ∈ E(G) with all possible edges between Hi and Hj. From this reason we will say that vi ∈ V(G)
expands to Hi in G[H1, . . . , Hn].

The generalized lexicographic product was introduced by Sabidussi back in [13]. If all the graphs Hi,
i ∈ [n], are isomorphic to agraphH, then thegeneralized lexicographicproductG[H1, . . . , Hn] = G[H, . . . , H]
becomes the standard lexicographic product G[H].

Theorem 5.1. Let G be a graph with V(G) = {v1, . . . , vn} and let ki, i ∈ [n], be positive integers. If S is a gp-set
of G that induces a complete subgraph of GSR, andmin{ki : vi ∈ S} ≥ max{ki : vi ∉ S}, then

gp(G[Kk1 , . . . , Kkn ]) =
∑
i:vi∈S

ki = ω((G[Kk1 , . . . , Kkn ])SR) .

Proof. Let G and its gp-set S be as stated in the theorem. Then gp(G) = ω(GSR) by Theorem 3.1. To simplify the
notation, let Ĝ = G[Kk1 , . . . , Kkn ] in the rest of the proof. Moreover, if a vertex vi ∈ V(G) expands to R = Kki
in Ĝ, and v̂ ∈ V(R), then we will write vi = g(v̂). That is, if v̂ ∈ Ĝ, then g(v̂) is the vertex of G that expands to
the complete subgraph of Ĝ to which v̂ belongs.

If x̂, ŷ ∈ V(Ĝ), x̂ = ̸ ŷ, then by the construction of Ĝ we infer that

dĜ(x̂, ŷ) =
{
1; g(x̂) = g(ŷ) ,
dG(g(x̂), g(ŷ)); g(x̂) = ̸ g(ŷ) .

(2)

By Theorem 2.2, the components of 〈S〉 are complete subgraphs of G, denote them with Q1, . . . , Qr. Then
gp(G) =

∑r
i=1 |V(Qi)|. Since each vertex of Qi expands to a complete subgraph of Ĝ, the complete subgraph

Qi expands to a complete subgraph of Ĝ, we will denote it with Q̂i.
We �rst claim that Ŝ =

⋃r
i=1 V(Q̂i) is a general position set of Ĝ. If x̂ ∈ V(Q̂i) and x̂′ ∈ V(Q̂i′ ), where

i, i′ ∈ [r], i ≠ i′, then dĜ(x̂, x̂
′) = dG(g(x̂), g(x̂′)) holds by (2). Therefore, since {Q1, . . . , Qr} form an

in-transitive, distance-constant partition of S, the complete subgraphs {Q̂1, . . . , Q̂r} form an in-transitive,
distance-constant partition of Ŝ. Hence, in view of Theorem 2.2, Ŝ is a general position set of Ĝ.

We next claim that Ŝ is a gp-set of Ĝ. Assume on the contrary that there exists a general position set T̂ of Ĝ
such that |T̂| > |Ŝ|. Applying Theorem 2.2 again we know that the components of 〈T̂〉 are complete graphs. Let
T = {g(x̂) : x̂ ∈ T̂}. Since T̂ is a general position set and because of (2) we infer that T is a general position
set of G. But since min{ki : vi ∈ S} ≥ max{ki : vi ∉ S} and |T̂| > |Ŝ| it follows that |T| > |S| = gp(G), a
contradiction.

We have thus proved that gp(Ĝ) =
∑

i:vi∈S ki. To complete the proof we need to show that also ω(ĜSR) =∑
i:vi∈S ki. Since S is a complete subgraph of GSR and because of (2) we get that Ŝ is a set of MMD vertices of

Ĝ. By the equality part of Theorem 3.1 we thus have ω(ĜSR) = gp(Ĝ) =
∑

i:vi∈S ki.

6 Rooted product graphs
By a rooted graph we mean a connected graph having one �xed vertex called the root of the graph. Consider
now a connected graph G of order n, and let H be a rooted graph with root v. The rooted product graph G ◦v H
is the graph obtained from G and n copies of H, say H1, . . . , Hn, by identifying the root of Hi with the ith

vertex of G, see [14, 15]. To formulate the following result, the notion of an interval between vertices u and v
of a graph G, de�ned as IG(u, v) = {w : dG(u, v) = dG(u, w) + dG(w, v)}, will be useful.

Theorem 6.1. Let G be any connected graph of order n ≥ 2, and let H be a rooted graph with root v.

(i) gp(G ◦v H) = n = ω((G ◦v H)SR) if and only if H is a path and v is a leaf of H.
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(ii) If H contains a gp-set S not containing v and such that for each pair of vertices u, w ∈ S neither u ∈ IH(v, w)
nor w ∈ IH(v, u), then gp(G ◦v H) = n · gp(H). Moreover, if in addition S is a maximum clique in HSR, then
gp(G ◦v H) = ω((G ◦v H)SR).

(iii) SupposeH is not a path rooted in one of its leaves. If every gp-set S ofH either contains the root v, or contains
two vertices x, y such that (x ∈ IH(v, y) or y ∈ IH(v, x)), then 2n ≤ gp(G ◦v H) ≤ n(gp(H) − 1). Particularly,
if every gp-set of H contains the root v, then gp(G ◦v H) = n(gp(H) − 1).

Proof. (i) If G is P2 and H is a path rooted in a leaf v, then G ◦v H is also a path, and so gp(G ◦v H) = 2 =
ω((G ◦v H)SR). In this sense, from now we may assume G is di�erent from P2.

If H is a path and v is a leaf, then clearly the set formed by the remaining leaves of all copies of H forms
a general position set of G ◦v H, and so gp(G ◦v H) ≥ n. Now, suppose gp(G ◦v H) > n and let S be gp-set of
G◦v H. In consequence, by the pigeon hole principle there exists a copy, say Hi, of H such that |S∩V(Hi)| ≥ 2,
and indeed, it must happen |S ∩ V(Hi)| = 2. But then, the two vertices of S ∩ V(Hi) and any other distinct
vertex of S lie on a common geodesic, which is not possible. Therefore, gp(G ◦v H) ≤ n and the �rst equality
follows. On the other hand, it can be easily observed that the strong resolving graph of G ◦v H is formed by
a component isomorphic to a complete graph Kn, and the remaining vertices of it are isolated ones. Thus,
ω((G ◦v H)SR) = n, which gives the second equality.

On the other hand, assume gp(G ◦v H) = n = ω((G ◦v H)SR). If H is not a path rooted in one of its leaves,
then there are at least two vertices of H, say a, b, such that dH(a, v) = dH(b, v). In consequence, the set
formed by the union of the copies of a and b in each copy of H is a general position set of G ◦v H of cardinality
2n, which is not possible. Thus, H must be a path rooted in one of its leaves.

(ii) Let Ai, i ∈ [n], be a gp-set of Hi satisfying the statement of the item, and let A =
⋃n
i=1 Ai. Then A

is a general position set of G ◦v H, and so gp(G ◦v H) ≥ n · gp(H). Hence, suppose gp(G ◦v H) > n · gp(H)
and let B be a gp-set of G ◦v H. Thus, again by the pigeon hole principle, there must be a copy Hj of H such
that |B ∩ V(Hj)| > gp(H), but this is impossible since each copy of H is an isometric subgraph of G ◦v H and
B ∩ V(Hj) is a general position set of the graph induced by Hj. Consequently, gp(G ◦v H) ≤ n · gp(H) and the
equality follows.

On the other hand, assume that Ai is a maximum clique in HSR. Hence gp(H) = ω(HSR). Thus, from
the above we get that gp(G ◦v H) = n · ω(HSR). It remains only to prove that ω((G ◦v H)SR) = n · ω(HSR).
Since any two vertices u, w ∈ Ai satisfy that neither u ∈ IH(w, v) nor w ∈ IH(u, v), we see that A =

⋃n
i=1 Ai

(de�ned as above) is also a clique in (G ◦v H)SR, and so ω((G ◦v H)SR) ≥ n · ω(HSR). Clearly, if we suppose
that ω((G ◦v H)SR) > n · ω(HSR), then we obtain that some (Hj)SR contains a clique of cardinality larger than
ω(HSR), which is not possible. Therefore, the required equality follows.

(iii) If every gp-set S ofH either contains v or contains two vertices x, y such thatwithout loss of generality
v belongs to an x, y-geodesic, then in order to construct a general position set of G ◦v H from the union of
the gp-sets S in each copy of H, we need to remove some vertices from each copy of S including v if it is the
case. Clearly, the maximum number of vertices we may remove from S is |S| − 1, since a set formed by one
vertex from each copy of H is a general position set of G ◦v H. However, as we next show by removing from S
at most |S| − 2 vertices or removing |S| − 1 and adding one other vertex not from S, we also obtain a general
position set. Since H is not a path rooted in one of it leaves, there are two vertices xi , yi ∈ V(Hi) such that
dHi (xi , v) = dHi (yi , v), i ∈ [n]. Thus, the set Q =

⋃n
i=1{xi , yi} is a general position set of cardinality 2n in

G ◦v H, and the lower bound follows. On the other hand, let D be a gp-set of G ◦v H and for every i ∈ [n],
let Di = D ∩ V(Hi). If there is a set Dj such that |Dj| = gp(H) (note that |Dj| ≤ gp(H) since V(Hj) induces
an isometric subgraph of G ◦v H), then either v ∉ Dj or for any two vertices x, y of Dj it must happen that v
does not belong to an x, y-geodesic nor to a y, x-geodesic, but this is a contradiction with our assumption.
Therefore, for every i ∈ [n], |Di| ≤ gp(H) − 1, which implies the upper bound.

We now consider the particular case in which every gp-set of H contains the root v. Let Si be a gp-set of
the copy Hi of H and let S =

⋃n
i=1(Si \ {v}). Since v belongs to Si, it happens that v does not belong to any

x, y-geodesic for every x, y ∈ S \ {v}. Thus, no three vertices of S lie on the same geodesic of G ◦v H, and so,
S is a general position set of G ◦v H. Therefore, gp(G ◦v H) = n(gp(H) − 1).
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Equality in the lower bound given in item (iii) of Theorem 6.1 above can be noticed if H is a path rooted in
a vertex of degree two, where gp(G ◦v H) = 2n. On the other hand, as we next observe the value of gp(G ◦v H)
can be very far from both bounds given above.

Proposition 6.2. There is a graph G of order n and a graph H rooted in a vertex v such that n � gp(G ◦v H)�
n(gp(H) − 1).

Proof. We consider a graph H obtained as follows. We begin with a complete graph Kr. Next we add a vertex
v and join it by an edge to exactly t vertices of Kr, where 2 ≤ t ≤ r − 2, and choose v as the root of this graph.
Note that H has only one gp-set S formed by the set of vertices of the complete graph Kr. Also, note that if x
is adjacent to v, then x ∈ IH(y, v) for any y not adjacent to v.

Now, let G be a connected graph and let A be a gp-set of G ◦v H. Thus, if Ai = A∩V(Hi), then either every
vertex of Ai is adjacent to v or no vertex of Ai is adjacent to v, and so |Ai| ≤ max{t, r − t}. As a consequence,
gp(G ◦v H) = |A| =

∑n
i=1 |Ai| ≤ n ·max{t, r− t}. On the other hand, the union of all neighbors of v in each copy

of H in G ◦v H, or the union of all not neighbors of v in each copy of H in G ◦v H is clearly a general position
set of G ◦v H, and so gp(G ◦v H) ≥ n ·max{t, r − t}, which implies the equality gp(G ◦v H) = n ·max{t, r − t}.
Since gp(H) = r, the di�erence n(gp(H) − 1) − gp(G ◦v H) = n(r − 1 −max{t, r − t}) can be arbitrarily large, as
well as the di�erence gp(G ◦v H) − n = n(max{t, r − t} − 1).
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